Author(s) : Teenu Paul

Volume & Issue : VOLUME 2 / 2017 , ISSUE 1

Page(s) : 92-95


The main objective of this design is to depict a small-sized, dual-wideband implantable antenna operating in the Medical Device Radio communications Service (MedRadio) (401–406 MHz) and Industrial, Scientific, and Medical (ISM) (2.4–2.48 GHz) bands. The proposed antenna has a 71.6% reduction in size with respect to the previous similar dual-band implantable antenna. The measured -10dB bandwidths are 56% (278 MHz) for the MedRadio and 33% (870 MHz) for the ISM bands, respectively. The antenna is in vitro tested in a tissue-mimicking gel approximating the electrical properties of human skin tissue.


Implantable antenna, Industrial, Scientific, and Medical (ISM) band, Medical Device Radio communications Service (Med- Radio) band.


[1]T. Karacolak, A. Zach Hood, and E. Topsakal,
“Design of a dual band implantable antenna and
development of skin mimicking gels for continuous
glucose monitoring,” IEEE Trans. Microw. Theory
Tech., vol. 56, no. 4, pp. 1001–1008, Apr. 2008.
[2]J. Kim and Y. Rahmat-Samii, “Implanted antennas
inside a human body: Simulations, designs, and
characterizations,” IEEE Trans. Microw.Theory
Tech., vol. 52, no. 8, pp. 1934–1943, Aug. 2004.
[3]T. Karacolak, R. Cooper, and E. Topsakal,
“Electrical properties of rat skin and design of
implantable antennas for medical wireless telemetry,”
IEEE Trans. Antennas Propag., vol. 57, no. 9,
pp.2806–2812, Sep. 2009.
[4]P. Soontornpipit, C. M. Furse, and Y. C. Chung,
“Design of implantable microstrip antennas for
communication with medical implants,”IEEE
Trans.Microw. Theory Tech., vol. 52, no. 8, pp.
1944–1951, Aug. 2004.

[5]W. Xia, K. Saito, M. Takahashi, and K. Ito,
“Performances of an implanted cavity slot antenna
embedded in the human arm,” IEEE Trans. Antennas
Propag., vol. 57, no. 4, pp. 894–899, Apr. 2009.
[6]T. Karacolak, R. Cooper, J. Butler, S. Fisher, and
E. Topsakal, “In vivo verification of implantable
antennas using rats as model animals,” IEEE
Antennas Wireless Propag. Lett., vol. 9, pp. 334–337,
[7]T. F. Chien, C. M. Cheng, H. C. Yang, J.W. Jiang,
and C. H Luo, “Development of non superstrate
implantable low-profile CPW-fed ceramic antennas,”
IEEE Antennas Wireless Propag. Lett., vol. 9, pp.
509–602, 2010.
[8]FCC, Washington, DC, USA, “Federal Communications
Commission,”2012 [Online]. Available:
[9]JohnynUng and TutkuKaracolak,”A wide band
implantable antenna for continuouse health monitoring
in the med radio and ism bands,”IEEEantennas
and wireless propagation letters vol.11.2012
[10]N.AAziz,Z.R.Mohamad,M.Abu and A. Othman,
”Design of ultra wide band (UWB)implantable antenna
for biomedical telemetery” vol 11,no.5 March
[11]Cynthia M. Furse, Andrew Chrysler,”A History
& Future of Implantable Antennas”.
[12]Manjulatha V and K.Ch. Sri Kavya,”implantable
antennas for biomedical applications.”
[13]Fatma Zengin1, ErenAkkaya, BahattinTüretken,
S. ErenSan,”Design and Realization of Ultra Wide-
Band Implant Antenna for Biotelemetry Systems”
[14]Y. Cho and H. Yoo,“Miniaturised dual-band
implantable antenna
for wireless biotelemetry”